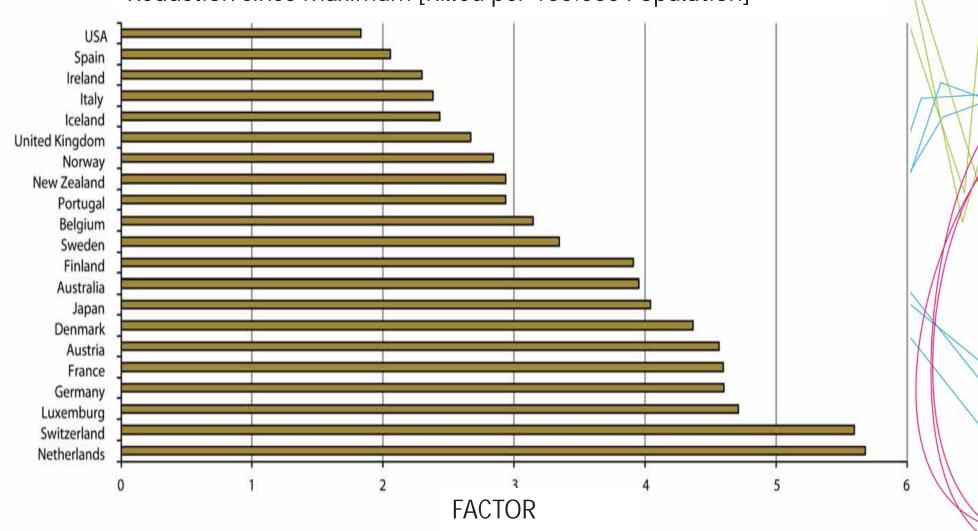


A FUTURE OF INDIVIDUAL URBAN MOBILITY: FROM THE EGO- TOWARDS E.CO-MOBILE

Jörg Beckmann, Mobility Academy

4+1 PATHWAYS TO THE FUTURE



PEAK DEATH

WHAT FUTURE DO WE WANT?

«Currently, 1.2 million individuals die in traffic accidents annually. Volvo Cars has a vision of **no serious injuries or deaths in or by a Volvo car** by the year **2020**, in line with a long tradition focusing on safety.»

Volvo Car Corporation , Corporate Report 2008/09

- In **Germany**, between 2009 and 2012, 100 cities with + **50.000** inhabitants (total 181) reached at least once ZERO DEATHS. Six cities had no deaths at all.
- II. Amongst cities with +100.000 inhabitants, 12 reached at least once ZERO DEATHS and 5 cities twice.
- III. 3 cities with +200.000 inhabitants achieved once ZERO DEATHS: Aachen, Oberhausen und Mönchengladbach.

DECARBONISATION

IME	PE	Process	Fuel	Powertrain	Car	WTT g CO2 eq / km		WTW g CO2 eq / km	SE g CO2 eq/MJ fuel	Rel. DISI %	Red. Pot. (WTW) %
2010	Sun	Electricity generation (photovoltaic), grid	Electricity	Electric Vehicle with Li- lon Battery	EUCAR reference car (compact)	0.00	0.00	0.00	0.00	0.00	-100.00
2010	Water	Electricity generation (water turbine), grid	Electricity	Electric Vehicle with Li- Ion Battery	EUCAR reference car (compact)	0.00	0.00	0.00	0.00	0.00	-100.00
	CH-Mix for Electricity	Electricity generation (CH-Mix of production), grid	Electricity	Electric Vehicle with Li- Ion Battery	EUCAR reference car (compact)	5.57	0.00	5.57	9.56	3.43	-96.57
2010	CH-Mix for Electricity	Electricity generation (CH-Mix of consumption), grid	Electricity	Electric Vehicle with Li- Ion Battery	EUCAR reference car (compact)	16.30	0.00	16.30	27.94	10.03	-89.97
2010	Natural Gas	Natural gas pipeline 4000 km, electricity generation (CCGT), grid	Electricity	Electric Vehicle with Li- lon Battery	EUCAR reference car (compact)	73.20	0.00	73.20	125.51	45.07	-54.93
2010	EU-Mix for Electricity	Electricity generation (EU-Mix), grid	Electricity	Electric Vehicle with Li- lon Battery	EUCAR reference car (compact)	75.34	0.00	75.34	129.19	46.39	-53.6
2010	Oil	Oil drilling, ship, diesel refining, land	Diesel	Hybrid: Diesel Dir. Inj. Part. Fil. (advanced DICI)	EUCAR reference car (compact)	18.91	99.10	118.01	88.73	72.66	-27.34
2010	Oil	Oil drilling, ship, gasoline refining, land	Gasoline GCC2	Hyprid: Otto Engine (advanced DISI)	EUCAR reference car (compact)	19.34	114.00	133.34	86.53	82.10	-17.90
2010	Coal	Coal-EU-Mix, electricity generation (coal, integrated gasification combined cycle), grid	Electricity	Electric Vehicle with Li- lon Battery	EUCAR reference car (compact)	139.41	0.00	139.41	239.05	85.84	-14.16
2010	Oil	Oil drilling, ship, diesel refining, land	Diesel	Diesel Direct Inj. Particul Filter (DICI)	EUCAR reference car (compact)	23.56	123.10	146.66	88.51	90.31	-9.69
2010	Oil	Oil drilling, ship, gasoline refining, land	Gasoline	Otto Direct Injection (DISI)	EUCAR reference car (compact)	23.58	138.82	162.40	86.42	100.00	0.00

DECARBONIZING THE URBAN CAR

«Unlike the ICE-Car, the E-Car has an enabling element for urban transport policy-makers: it allows for more **locally-based**

measures to curb and evbentually zeronise carbon-emissions from

individual transport.»

- . Invent! «Give the car a plug- no matter what.»
- Incentify! «Do not tax the plug!»
- Integrate! «The electric car is both a vital part of an urban transport system and a city's electricity-grid.»

WHAT IS DEMOTORIZATION?

Specific Downsizing
(«smaller engine»)
Structural Downsizing
(«other type of vehicle»)
Systemic Downsizing
(«different propulsion»)

reduce mechanical power...

DEMOTORIZING INDIVIDUAL URBAN MOBILITY

... and increase human power

Modal Upscaling
(«from non-motorized to semi-motorised»)
Geographical Upscaling
(«from short to medium-range»)
Loadal Upscaling
(«from single to multiple passengers»)

THE UNIVERSAL BICYCLE

Hyper-Mobility

«the average speeds of bicycles in inner urban areas exceed those of passenger cars»

NON-REFLEXIVE

Pseudo-Mobility

« you get more lovely looks & respect by cruising with a cool vintage-racer, than in a heavy SUV »

RATIONAL

Multi-Mobility

«connecting needs and combining modes is so easy with a folding-bike »

EMOTIONAL

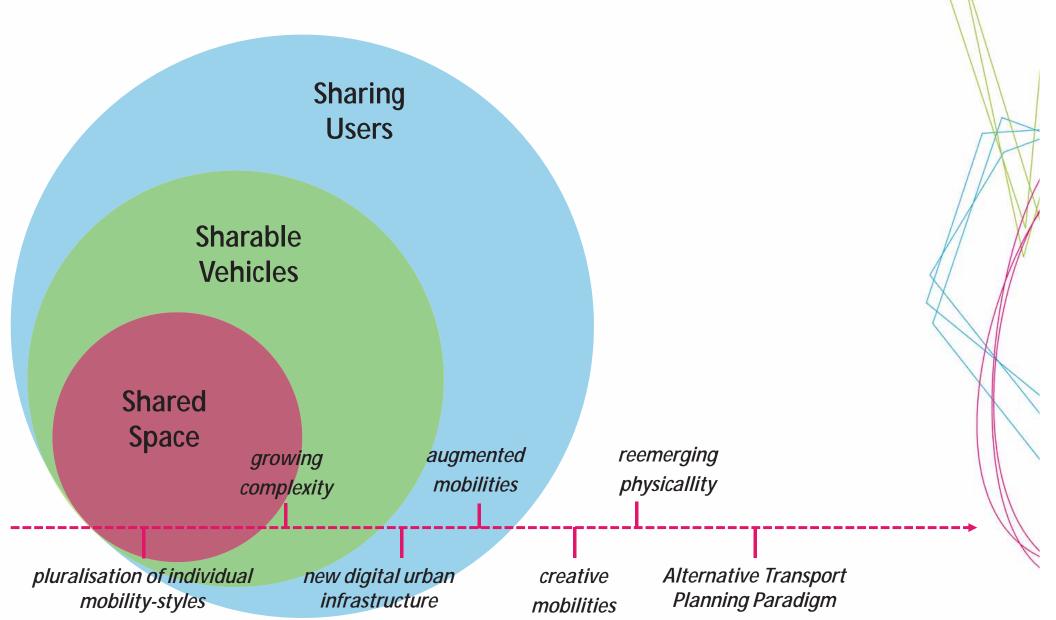
Retro-Mobility

«doing less with more and not more with less, is one urban Zeitgeist, that you best meet with a nonelctrified cargo-bike»

REFLEXIVE

DEVALUTION

«In urban areas, the **«EGO-MOBILE»** has lost both its value-propositions: the practical and the symbolic one .»



REMOBILIZATION:

A NEW URBAN COLLABORATIVE MOBILITY PARADIGM

