Three Revolutions in Urban Transportation: *How to achieve the full potential of vehicle electrification, automation and shared mobility in urban transportation systems around the world by 2050*

Wocomoco

5th WORLD COLLABORATIVE MOBILITY CONGRESS PROGRAMME 20 OCTOBER 2017, EMBASSY OF THE NETHERLANDS BERLIN & ESMT BERLIN

> Lew Fulton, Co-Director Sustainable Transportation Energy Pathways Program (STEPS) UC Davis

Passenger Transport Revolutions

- 1. Streetcars (~1890)
- 2. Automobiles (~1910)
- 3. Airplanes (~1930)
- 4. Limited-access highways (1930s....1956)

<u>2010+</u>

- 1. Vehicle electrification
 - low carbon vehicles and fuels
- 2. Real-time, shared mobility
 - less vehicle use
- 3. Vehicle automation (2025?)
 - Uncertain impacts

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Research undertaken by UC Davis and ITDP, part 3 of a series

Global scenario study to 2050 focused on potential 3 Revs impacts on CO2, energy use, costs

Study supported by UC Davis STEPS Consortium and by Climate Works, Hewlett Foundation, Barr Foundation

https://steps.ucdavis.edu/threerevolutions-landing-page/

Three Revolutions in Urban TRANSPORTATION

How to achieve the full potential of vehicle electrification, automation and shared mobility in urban transportation systems around the world by 2050

> Lew Fulton, UC Davis Jacob Mason, ITDP Dominique Meroux, UC Davis

> > May 2017

Research supported by: ClimateWorks Foundation, William and Flora Hewlett Foundation, Barr Foundation

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS of the Institute of Transportation Studies

Institute for Transportation & Development Policy

Have EVs arrived?

During 2017, The number of PEVs worldwide will likely go over 3 million, with over 1 million in sales this year

Norway & Netherlands achieved high PEV market shares in 2016, most other national markets around 1-2%

Car of the future?

September 2016

Or this?

Electrification + Automation: likely, but not definitely, together

All autonomous vehicles in development feature some form of electrification

Parent		Model	Powertrain	Production	Notes
Company					
	Nissan	Leaf	Electric	2020	
	Chevrolet	Bolt	Electric		Testing 40 vehicles in SF and Scottsdale
FCA	Chrysler	Pacifica	Hybrid		Testing 100 vehicles with Google
Ford	Ford	Fusion	Hybrid	2021	
	Volvo	XC90	Hybrid		
Uber	Ford	Fusion Energi	PHEV		
Uber	Volvo	XC90	Hybrid		
	Mercedes- Benz	F015 Luxury in Motion	Hydrogen Fuel Cell Plug-In Hybrid		Research Vehicle

AV costs dropping quickly

Cost of LIDAR used on the Google car was \$75 – 85,000, and by early 2016, Velodvne began selling LIDAR for \$500 per unit to Ford.

Autonomous Vehicle Technology Cost Estimates

Institute for Transportation & Development Policy

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Ride sharing is exploding around the world...

...but is it really ride sharing?

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

The Evolution of Shared Mobility Services

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Source: Clewlow, Regina R. and G S. Mishra (2017) Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States.

Ride-hailing in the U.S. currently substitutes for more sustainable modes than for driving

Source: Clewlow, Regina R. and G S. Mishra (2017) Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States.

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

- 49% to 61% of ride-hailing trips in major U.S. metro areas would have not been made at all, or by walking, biking, or transit.
- Ride-hailing attracts
 Americans away from bus
 services (a 6% reduction)
 and light rail services (a 3%
 reduction).
- Ride-hailing serves as a complementary mode for commuter rail services (a 3% net increase in use).
- Directionally, we conclude that ride-hailing is currently likely to contribute to growth in vehicle miles traveled (VMT).

This can go in very different directions...

"Heaven" Scenario

- Ride sharing, multimodal (transit/NMT) ecosystem
- More compact, livable cities
- "Right-sizing" of vehicles
- Reduction in traffic/travel times
- Fuel efficiency improvements/ electrification/lower CO2

"Hell" Scenario

- More single-occupant (and zero occupant) vehicles
- More sprawl/cardependence
- Bigger vehicles
- Longer trips/ time spent traveling/ increased traffic congestion
- Higher energy use/CO2

Some questions and conflicts

- Automation: lower per-trip costs, lower "time cost" for being in vehicles
 - Just how much cheaper will it be?
 - Private automated vehicles = longer trips?
 - Empty running (zero passengers) of vehicles
 - Resulting relative costs of private vehicles, shared mobility, transit?
- Electrification goes with automation does it really?
 - Can get the job done with upgraded electrical system (such as hybrids)
 - But electric running will be much cheaper and durable?
- Ride hailing: cost savings v. convenience and risk
 - Complementary or at conflict with public transit use?
 - Will lower costs reduce the incentive to ride share?

Part 2: our scenarios...we want to explore these interactions and different possible futures

Rough guide to the three scenarios

	Auto- mation	Electrifi- cation	Shared Vehicles	Urban Planning/ Pricing/TDM Policies	Aligned with 1.5 Degree Scenario
Business as usual, Limited Intervention	Low	Low	Low	Low	Νο
1R Automation only	HIGH	Low	Low	Low	Νο
2R With high Electrification	HIGH	HIGH	Low	Low	Maybe
3R With high shared mobility, transit, walking/cycling	HIGH	HIGH	HIGH	HIGH	YES

Passenger kilometers of travel by scenario/mode World

- Automated vehicle travel not significant by 2030 in any country/scenario, but dominates in 2050 in most of the world. Results in much higher travel in 2R
- In 3R private LDVs reach very low levels; nearly 50% of travel in 2050 is in transit/non-LDV modes.

Institute for Transportat & Development Policy

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Passenger kilometers of travel by scenario/mode OECD Europe

- Automated vehicle travel not significant by 2030 in any scenario, but dominates in 2050. Results in much higher travel in 2R
- Europe remains fairly car dominated to 2050 modal mix changes in 3R, but mostly due to TNCs. Significant minibus travel. Non-car travel reaches 35% in 3R

OECD-Europe LDV travel (VKm) by scenario

- 2R vehicle travel rises sharply after 2030 due to lower travel costs from automated vehicles
- 3R vehicle travel flat despite declining vehicle stock, given higher travel per vehicle of public vehicles

3500

3000

2500

2000

1500

1000

500

n

2015

2020

Private ICE

Shared ICE

2025

billion vehicle kilometers

2R

Institute for Transportation & Development Policy

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

2030

Private EV

Shared EV

2035

2040

Private AV/EV

Shared AV/EV

2045

OECD-Europe LDV stock evolution by scenario

- 2R stocks nearly completely autonomous by 2050
- 3R stocks strongly decline after 2030, due to lower passenger travel levels, intensive vehicle use and higher load factors

Institute for Transportation & Development Policy

300 **2R** 250 Stocks, millions 200 150 100 50 0 2015 2020 2025 2030 2040 2045 2050 2035 Private ICE Private EV Private AV/EV Shared ICE Shared EV Shared AV/EV

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Energy use by scenario, mode

• Far lower energy use in 2R due to EVs, and in 3R due to low LDV mode shares

Urban passenger transport CO2 by scenario, vehicle type, world

Global CO2 reduction in a 2DS electricity world, 2R/3R v. BAU, in 2050 and cumulative

Institute for Transportation & Development Policy

		2015-2050
	2050	cumulative
2R v BAU	82%	37%
3R v BAU	93%	53%

4DS electricity shown; in 2DS,

CO2 from electricity drops to

near zero in 2050

Costs start to deviate across scenario after 2030, 3R 40% cheaper in 2050

- The combination of far fewer vehicles, lower travel/fuel levels, lower infrastructure requirements (roads/parking) makes 3R far cheaper.
- 2R more expensive than BAU due to higher cost of AV/EVs and greater travel

Supportive Policies - critical to success of the scenarios

- 3R Scenario (Automation + Electrification + <u>Sharing</u>):
 - Compact Urban Development policies

×0²

- Efficient parking policies
- Heavy investment in transit/walking/cycling
- VKT fees (incl. congestion & emission factors):

Highest Fee

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

504

19 Capacity

Largest

Subsidy

I.C.L.E.I Local Governments for Sustainability

P Institute for Transportation & Development Policy

WORLD RESOURCES ROSS INSTITUTE CENTER

10 Principles

https://www.sharedmobilityprinciples.org/

- 1. We plan our cities and their mobility together.
- 2. We prioritize people over vehicles.
- 3. We support the shared and efficient use of vehicles, lanes, curbs, and land.
- 4. We engage with stakeholders.
- 5. We promote equity.
- 6. We lead the transition towards a zero-emission future and renewable energy.
- 7. We support fair user fees across all modes.
- 8. We aim for public benefits via open data.
- 9. We work towards integration and seamless connectivity.
- 10. We support that autonomous vehicles (AVs) in dense urban areas should be operated only in shared fleets.

Three additional "Lew" Principles

- 1. We must pay close attention to the relative cost of vehicles/modes (\$\$, time, safety convenience, etc)
- 2. We must enable pricing as a true policy option, and have a social contract on how we spend those revenues
- We must somehow convince consumers that they (and society) will be better off if they don't actually own driverless cars, and maybe don't own any car